AD-A245 825
T

NrS-MA-92-002

NAVAL POSTGRADUATE SCHOOL@

Monterey, California

DOWNDATING OF SZEGO POLYNOMIALS AND
DATA FITTING APPLICATIONS

W.B. Gragg
G.S. Ammar
L. Reichel

January 1992

Approved for public release; distributicn unlimited

Prepared for: Naval Postgraduate School and the
National Science Foundation,
Washington D.C. 20550

92-03278
LR




e o 50 28 oo
L A ad RER
W o v b
5o rbrd
o ‘
Skl N
ko . .
[ =
VR Y
2 Y0 QY

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT -
REPRODUCE LEGIBLY.




. NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

Rear Admiral R. W. West, Jr. Harrison Shull
Superintendent Provost

This report was prepared in conjunction with research conducted
for the National Science Foundation and for the Naval
Postgraduate School Research Council. Funding was provided by the
Naval Postgraduate School. Reproduction of all or part of this
report is authorized.

Prepared by:

%ﬁ?%w

WILLIAM GRAGG
Professor of Mathematlcs

Reviewed by: Released by:

BAEWIRS

HAROLD M. FREDRICKSEN
Chairman Dean oY Research
Department of Mathematics




SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

form Approved
OMB No (0704-0188

1a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

2b DECLASSIFICATION/ DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
NPS-MA-92-002

5 MONITORING ORGANIZATION REPORT NUMBER(S)
NPS-MA-92-002

68 NAME OF PERFORMING ORGANIZATION
Naval Postgraduate School

6b OFFICE SYMBOL
(!f applicable)

MA

7a NAME OF MONITORING ORGANIZATION
Naval Postgraduate School and the

National Science Foundation

6¢. ADDRESS (City, State, and 2iP Code)
Monterey, CA 93943

7b ADDRESS (City, State, and ZiP Code)
Monterey, CA 93943 and
Washington, D.C, 20550

82 NAME OF FUNDING /SPONSORING
ORGANIZATION
Naval Postgraduate School

8b OFFICE SYMBOL
(If applicable)

MA

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

O&MN, Direct funding

8¢. ADDRESS (City, State, and 2IP Code)
Monterey, CA 93943

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO NO

TASK
NO

WORK UNIT
ACCESSION NO

11 TITLE (Include Security Classitcation)

DOWNDATING OF SZEGO POLYNOMIALS AND DATA FITTING APPLICATIONS

12 PERSONAL AUTHOR(S)
William Gragg, Greg Ammar, Lother Reichel

13a TYPE OF REPORT 13b TIME COVERED

14 DATE OF REPORT (Year, Month, Day) 'S PAGE COUNT

Technical Report raom 1/91 10 6/91 2 January 1992

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Szego polynomials, downdating, FFT, least squares,

missing observations

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Many algorithms for polynomial least squares approximation of real-valued function on a
real interval determine volynomials that are orthogonal with respect to a suitable inner pred-
uct defined on this interval. Analogously, it is convenient to compute Szegé polynomials, i.e.,
polynomials that are orthogonal with respect to an inner product on the unit circle, when ap-
proximating a complex-valued function on the unit circle in the least squares sense. It may also
be appropriae to determine Szegd polynomials in algorithms for least squares approximation
of real-valued periodic functions by trigonometric polynomials. This paper is concerned with
Szego polynomials that are defined by a discrete inner product on the unit circle. We present
a scheme for downdating the Szego polynomials and given least squares approximant when a
node is deleted from the inner product. Our scheme uses the QR algorithm for unitary upper
Hessenberg matrices. We describe a data-fitting application that illustrates how our scheme can
be combined with the fast Fourier transform algorithm when the given nodes are not equidistant.

Application to sliding windows is discussed also.

20 DISTRIBUTION/AVAILABILITY OF ABSTRA(CT

Klunciassipeounumiteo 03 same As reT (] oTic USERS

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code) | 22¢ OFfICE SYMBOL

William Gragg (408) 646-2194 MA/Gr
DD Form 1473, JUN 86 ’f’r’e\»lnous editions are obsolete UIEIECCI%X‘SYE]S_:EL‘?E?SICA”QNQJ THIS PAGE____

[RIATA IR I ol A B Y AV G A I




ICM-9111-20

Downdating of Szegé Polynomials and Data Fitting Applications

G.S. Ammar
Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115

W.B. Gragg
Department of Mathematics
Naval Postgraduate School Monterey, CA 93940

L. Reichel
Department of Mathematics and Computer Science
Kent State University
KCent, OH 44242-0001

ABSTRACT

Many algorithms for polync nial least squares approximation of real-valued function on a
real interval determine polynomials that are orthogonal with respect to a suitable inner prod-
uct defined on this interval. Analogously, it is convenient to compute Szegd polynomials, i.e.,
polynomials that are orthogonal with respect to an inner product on the unit circle, when ap-
proximating a complex-valued function on the unit circle in the least squares sense. It may also
be appropriate to determine Szegd polynomials in algorithms for least squares approximation

of real-valued periodic functions by trigonometric polynomials. This paper is concerned with

Szego polynomials that are defined by a discrete inner product on the unit circle. We present
a scheme for downdating the Szegdé polynomials and given les *t squares approximant when a
node is deleted from the inner product. Our scheme uses the QR algorithm for unitary upper
Ilessenberg matrices. We describe a data-fitting application that illustrates how our scheme can
be combined with the fast Fourier transform algorithm when the given nodes are not equidistant.
Application to sliding windows is discussed also.
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Downdating of Szego Polynomials
and Data Fitting Applications

G.S. Amnues \W.B. Gragg! L. Reichel®

Abstract

Many algorithms for polynomial least squares approximation of a real-valued function
on a real interval determine polynomials that are orthogonal with respect to a suitable inner
product defined on his interval. Analogously, it is convenient to compute Szegé polynomials,
i.e.. polynomials that are orthogonal with respect to an inner product on the unit circle,
when approximating a complex-valued function on the unit circle in vhe least squares sense.
It may also be appropriate to determine Szegd polynomials in algorithms for least squares
approximation of real-valued periodic functions by trigonometric polynomials. This paper
is concerned with Szegd polynomials that are defined by a discrete inner product on the
unit cirele, We present a scheme for downdating the Szegé polynomials and given least
sytares approximant when a node is deleted from the inner product. Our scheme uses the
QR algorivhm for unitary upper Hesseaberg matrices, \Ve describe a data-fitting application
that illustrates how our scheme can be combined with the fast Foutier transform algorithm
when the given nodes are not equidistant, Application o sliding windows is discussed also.

1 Introduction

Let {k}7%, be a set of distinct nodes on the nnit circle and lot {w}7, be a set of positive
weights. Introduce for complex-valued functions g and h defined .t 1he nodes the discrete inner

product or the unit circle

m

(g h)m i= Zy(:k)h(:k)wf., (1.1)

A=t
where the bar denotes complex conjugation. 'olvnomials that are orthogonal with respect to
an inner product on the unit circle are known as S:egé polynomials. Let {¢; ;",'[,' denote the
family of orthonormal Szegd polynomials with respect to the inner product (1.1), where &, is of
degree j and has a positive leading cocfficient. The polynomials @, satisfy the Szcgd recurrence

relations

Oplz) = do(3) = 1/aq,

*Department of Mathematcal Sciences. Northein Hlinows University, Delvalb, IL 60118.
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supported bv a National Research Council fellowship and NSF grant DMS-9002884.




Gi419ia1(z) = 20i(2) +1j+105(2), 0€j<m=1, T (12)
a,10i0(2) = 15,08,(2)+ 8)(2),

where the recurrence coefficients 7,41 € C and @,4; > 0 are determined by

m /2
= (Z u',",) .

Ty =
k=1
T+ = - (L 39, )m /‘\l‘ (1'3)
W !/2 \
Tp1 = (l - I‘/J+l|') . N<j<m,
be1 = 60541

Sce, for example, Grenander and Szegd [+, Chapter 2). It can be shown by induction that the

auxiliary polvnomials 031 in (1.2) satisfv
&y(3) = 2d,(1/2), 0<j<m,

where @,(=) denotes the polynomial obtained by conjugating the coefficients of ¢,(2) in the
power basis. Since the measure on the unit circle that defines (1.1) has preciscly m points of
increase, we have |v,| < 1 for 1 £ j < m and [y,,] = 1. The coefficients %, are known as Schur
parameters, and we refer to the g, as the associated complementary parameters. Although the
complementary parameters are mathematically redundant, we retain them during; computations
in order to avoid numerical instability. Note from (1.3) that ng is the total weight of the measure
that defines (1.1), and that 6;' is the leading coclflicient of ¢; for 0 < j < m,

For later reference we also define the polvnomial

Om(3) = :Om-l(:)'*"/mﬁam-l(z)- (1-4)

Then

om(z) =050, ﬂ(.:-sk). (1.5)
k=t
In particular, (¢m, ;) =0 for 0 < j < m.
Example 1.1. Let 2 := exp(27i(k = 1)/m) and wf := L for | € k < m. where i := V/=1.
Then go = m*/%, 0, = Land v, = 0 for 1 < j < m. and Y = L. Thus. ¢;(z) = m~4/227 for
0<j<m and gp(z)=m V3m ~ ), o

Iutrodnce the discrete norm

gl 1= (g.9)}/2,

<




and let IT,-; denote the sct of all polynomials of degree at most n ~-1. Let f be a given
complex-valued function defined at the nodes :;.. and consider the problem of computing the

polynomial p,—; € M,—,. for some n < m. that satisfies

If = pamillm = ,din If = plim . (1.6)

The solution pa-; of the minimization problem (1.6) can be expressed conveniently in terms of

the Szegé polynomials 6; as follows. Introduce the vector

f= [""lj{:l ). “".’j-( I)eeen "'vnf(:m )]T ’ (1'7)

and the m x » matrix Q = [q,],
qhj = OpmilSi)eny 1SS, | <j<gn, (1.8)

—
where uy = \/u'%. Note that the matrix Q hias orthonormal columns, i.e.. Q°Q = . where

0" := QT. Let the vector a = [ag aa.....a,)! be deflined by

a:=Qf. (1.9)

Then the polynomial p,-; can be written as

N

Pa=t = Zu,c‘{,-. . {1.10)

=1
where the Fourier coefficienis a, are independent of n.

It is the purpose of this paper to present an algorithm for downdating the recurrence coef-
ficieuts ¥, and o,. as well as the Fourier coelflicients a,. when an nede-weight pair is removed
from the inner product (1.1). OQur algorithm is hased on the observation that the columns of the
matrix @ are cigenvectors nf a unitary Hessenberg matrix defined by the recurrence relations
(1.2)~(L.3). This makes it ossible to downdate the cocllicients v, 0; and «, by applying the
QR algorithm for unitary ltessenberg matrices, presented in [5], with the node to be removed
as shift. Details are described in Section 2.

We remark that the problem of updating the cocllicients ¥,, ¢ and a, when a node-weight
pait {Sma1, wh4y} is added to the inner product (1.1) is discussed in [8]. The updating problem
can be solved by using an inverse QR algorithm for unitary Hessenberg matrices: see (8, 1].

Assume that we wish to determine the polvnomial p,~y, given by (1.9)-(1.10) withn < m

when the set of m nodes in the inner product (1.1) is a subset of the set of .V equidistant




nodes {exp(2rij/\N)}!, with & 1= & = m > 0 small, The weights w} are all assumed to be

unity. Then it may be attractive to compute jp,—; by first computing the polynomial interpolant
pyv-1 € My onthe set of .V cquidistant nodes by using the fast Fourier transform (FFT)
algorithm. and then determining ppy from px-y by applying onr downdating scheme. The
Fourier coefficients of the pelvnomial approximant p,-; are then equal to the first n Fourier
coefficients of pm.;. This approach can similarly be applied to trigonometric polynomials.
Details are described in Section 3. Computed examples are presented in Section « and Section 5
contains a summary.

Updating and downdating of polynomials approximants pn.; when all the nodes z; are
real has received considerable attention in the literature: sce Scott and Scott [9] and references
there. A collection of algorithms for updating and downdating hased on orthogonal polynomials

is presented by Llhay et al. [3). \lgorithms for updating are also considered in [6, 7).

2 Downdating of Szegd polynomials

The connection between the Szegd polynomials determined by (1.1) and a unitary Hessen-
berg matrix can he seen as follows. Using the basis of Szegd nolynomials, we can write
J+l
S midi-i(2) = 20,01(2), 1S5, (2.1)
(=1
where nj4y, =0, for 1 € j < moand pugrm = L Lot g, = 0for 3 € j+2 € & < m, and define

the upper Hessenberg matrix /1 = [y, ]72,. Vo deline the unitary matrix U = [/th];"‘k,l by
fhy 2= Oy () (2.2)

Substitution of & =z, 1 £ & < in.into (2.1) vields the equation

ntyt =7y, (2.3)

or, equivalently,
T =U*AU, (2.4)
where A := diag[z;.2,..... Sl Thus, I is a unitary upper llessenberg matrix with positive

subdiagonal elements that is uniquely determined by the inner product (1.1). Also note that
the first n columns of U make up the matrix @ defined by (1.8). Algorithms for the solution of
the least-squares problem (1.6) can therefore he viewed in terms of the spectral decomposition

(2.).




It is fairly straightforward to show. by using the recurrence ‘relations (1.2)-(1.3), that H

can be written as a’product of m clementary unitary transformations that are defined by the

recursion coelficients 4, and @, for the o,. We have

. - . I = Gi(q1)a(52) - '(-;'m-l(‘lrn-l)G::z(7m)v (2.5)

5

where the G,(v;), | £ j < m. are m x m Givens matrices

[j1

=% 9
Gy(m;) =
2(735) 3

’m-j-l

and G (ym ) is the dingonal matrix
ol ) o= diag[li Lo Lo=vm].

\We refer to the representation (2.5) as the Schur parametric form of H.

The development of efficient algorithms for cigenproblems for unitary Hessenberg matrices is
facilitated by the fact that every unitary upper llessenberg matrix with nonnegative subdiagonal
clements has a unique Schur parameterization, For example, when the implicitly shifted QR
algorithm is applied to find the spectral decomposition of a unitary lHessenberg matrix, a
scquence of intermediate unitary Hessonberg matrices is generated that converges to a diagonal
matrix. In [5] the QR algorithm for unitary Hessenberg matrices is formulated in terms of the
Schur parameters of the intermediate matrices. This results in an implementation that requires
only O(m) arithmetic operations per iteration on a matrix of order m.

Assume for the moment that the matrix /I and scaling factor og are given, but that the
nodes z; and weights w? of the inner product (1.1) are not explicitly known. Then it follows
from (2.4) and (2.2) that the nodes =4 are the cigenvalues of H, while the normalized weight
wi /ag is equal to the first component of the normalized eigenvector corresponding with zx. (We
assume that cach eigenvector is sealed to have unit Euclidean length and a nonnegative first
component.) The unitary Hessenberg, QR algorithm can be used to compute the matrix A\ and
vector {Feq. without computing the rest of UL with not more than Q(m) arithmetic operations

. per iteration. Thionghout this paper ej denotes the jaxis vector in €™, "T'he QR algorithm

determines one node-weight pair at a time. and for cach pair computed the order of the unitary



upper Hessenberg matrix is reduced by one. so that the reduced Hessenberg matri:: corresponds
with the node-weight pairs that have not vet heen determined.

We remark that in the case that the nodes ol the discrete inner prodict are real, then the
analogue of the matrix /I is a real symumetric tridiagonal matrix T with positive subdiagonal
clements. This matrix T contains recurrence coefficients for orthonormal polynomials that
satisfy a three-term recurrence relation. Golub and Welsch [4] proposed the use of the QR
algorithm for symmetric tridiagonal matrices for the computation of the node-weight pairs
associated with 7. This algorithm also determines one node-weight pair at a time. and reduces
the order of T when such a pair has been found.

Conversely, the constiuction of /I from the inner product (1.1) can be regarded as an
inverse cigenvalue problem. In particular. given the matrix A = diag[z;,23,....25m) and the
vector qo = ag [y, wa, ..., wm]T, we can perform a sequence of elementary unitary similarity

transformations whose composition results in an m x m unitary matrix U such that the matrix

[l OII‘ [t (l()' | OT -
0 t*)lq Nlo ¢]F

is of upper lessenberg form with positive subdiagonal clements. (The » represents an arbitrary

on the right-hand of
* aoe{

S (2.6)

scalar that remains unchanged.) In other words, U*qq = aye;, and U*AU is & unitary upper
lessenberg matrix /I, Consequently, I/ is the matiix corresponding with the inner product
(1.1).

The transformation of A to [l can be peifiormed using O(m?) arithmetic operations with
the inverse unitary QR (IUQR) algorithm described in {1]. The IUQR algorithm is an updating
procedure because it incorporates node-weight pairs one at a time. After the j** stage of the
algorithm has been exceuted, the j x j unitary Hessenberg matrix corresponding with the inner
product determined by the first j nodes and weights has been obtained.

In (8] the approximation problem (1.6) is solved using the IUQR algorithm to construct
the Schur paramecters of the unitary Iessenberg matrix //. The elementary unitary inatrices
are accumulated against the vector £ during the algorithm to obtain the vector of Fourier
coclficieuts a = /*f without explicitly forming U. In this way we obtain the interpolating
polynomial pm— that is the solution of (1.6) with n = m in O(m?) arithmetic operations. Of
course, the partial sums of the Fourier expansion o/ the interpolating polynomial yields the

solution (1.10) of (1.6) for each n < m. Morcover, if one is interested in computing ounly pn—y

)
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for n < m. then the algorithm can be curtailed so that only O(mn) arithmetic operations are
required for the computation of the parameters {=;}7.,. {0;}%0, and {a;}%,. Sce (§] for
derails.

Now assume that we have solved the least-squares problem (1.6) with n = m by the method
described in [8]. so that sets of Schur parameters {5}, and of complementary parameters
{a;} 1Ly corresponding with the inner product (1.1). as well as sets of Fourier coefficients {a;}Ta,
of the interpolating polynomial pn.y ave explicitly known. In the downdating problem, we seek
to solve the corresponding least-squares problem with one term deleted from (1.1). Iu particular,
let $ be the node that is to be deleted from the inner product (1.1) and let w be the square-root
of the associated weight., In order to simplify some formulas that follow, we assume without
loss of generality that 3 = 2, and © = wy,.

Introduce the inner product

nt

(D) wer i= N Uzl s (2.7)

11

[

and discrete norm

Hgllmer i= (200022

We seek the polynomial fin., € -7 such that

N = hmeellner = min (|f = pllmas . (2.8)
reil

e

Denote the family of orthonormal Szegd polynomials with positive ieading cocllicient associa.ved
with (2.7) by {"1).',';)2" Also let {#;}7:7" and {4}/ denote the sets of recurrence coefficients
for the ¢, and let \ = diag[zy, ..o zpm] i Go o= a7 o wmay )Y where &y 0= (aF =
W)/ is the total weight of the measure that defines (2.7). Then from the above discussion,

there is a unique unitary Hessenberg matrix /1 and a unique unitary matrix U such that
Udo = ;’Oél
and
Ir=0-A0, (2.9)

where &, denctas the j' axis vector in €71

Morcover. the recarrence cocflicients ¥, and
a; are the Schur parameters and complementary paranmeters. respectively, of Il The optimal

polynomial is then given by

l-'m-_’(:) = Z !11§;L_1(:).

r=l




where the vector of Fourier cocficients a = [dj.ds....Gm=1]T is given by & := U*f and
fi=(wif(z1)se .. 0mar S )T

Our scheme for downdating is based on the observation that JI and U can be computed
g

from H and U by applyving one step of the QR algorithm with “ultimate” shift 3. together with
v appiying g

some permutation similarity transformations. Lo determine a unitary matrix ¥ such that

- .T -
| 0.1. a eT I OT .*‘ 0091 w
[o v ][a:: n Ho W ] =|%& M0 (2.10)
= w o 3
Then .
[ yo } = VW
and
8 o= :
ez | =W (2.11)

Thus, the downdated Fourier coefficients &y are obtained by accumulating each clementary
unitary transformation against a. An cificient implementation is obtained by using the QR
algorithm for unitary lessenberg matrices described in [3).

We now assume that 3 := = for some J, 1 </ < m, and let @ := w;. One step of the QR
algorithm with shift £ applied to the matvix // determines a unitary upper Hessenberg matrix
V, such that

it o]
o’

because £ is an cigenvalue of JI. It is casy to see. however, that the QR algorithm applied to I/

tes

will not yield the required /7, because the veetar ayep will uot be transformed as required by
(2.10). On the other hand, an RQ algorithm for I/, in which the transforming matrix ¥ would
be a product of Givens matrices in the reverse order of (2.12) below, would vield the desired
similarity transformation.

Instead of modifying the unitary lessenberg QR algorithm of [5] to perform an RQ) iteration,
we apply the QR algorithin to the unitary llessenberg matrix HF := JHTJ, where J =
[emsem=1,. ... €] is the rcrersal matrir of order m. 1t is casily scen that if /[ is given by (2.5),
then

1P = G\(3))(a(3,) - a1 = 1)Gr (Fm )

where %, := Fy- 5, for 1 <5 <moand 3, :=+ . The application of the QR algorithin on

I[P is equivalent with that of the RQ algorithin on JI. One iteration of the QR algorithm with
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shift 2 applied to //¥ generates a unitary upper Hesserberg matrix

V= (-"1(51 )(-"2(‘52) e (-"m-l(ém-l )G:n(&m) (2'12)
such that

Uy = [ i ] . (2.13)

Moreover, 6., can be taken to be an arbitrary unimodular number because deflation las taken

place (3] Let 7j = (1 = l¢S,P)’/ ? dlenote the complementary parameter to é; for 1 < j < m,
Observe that only the last two components of V*age,, are nonzero, and that || = 1 can

he chosen so that these two components are given hy
{0 dney Tmel 0| _| Tm-100
) =ty Tim=1 ‘\‘m-l Ty |6m-1|00
Pinally, we translorm the right-hand side of (2.1:3) by similarity usin /0 where J is
akly, rausiorm th g b » aods ARG y g OT 1 )
the reversal mateix of order m = |, and transpose the result. In this way we transform /f to
i . -1 J 0 0oTm-1€}
w=n = o . | where W= JA . « Morcover, W*ope; =
0" : o7 1 et |6m-1lo0

by the uniqueness of the reduction, /I” = II, dgTm-1 = 80, and |m-1}00 = . The vector of

, and

Fourier cocfficients & is then determined from (2.11) by applying W* to a incrementally.
Observe that our downdating procedure requires knowledge of the node to be deleted but not
of the corresponding weight. We can therefore compare the computed value of 1 to the actual
value wy in order to assess the accuracy of the computations, If ¥ is not close to wy, then the
downdated polynomials 43, and fhy- might not be accurate. Another accuracy check is provided
by the computed value of p, in the algorithm. T'his quantity is the m'" diagonal cleinent of
the upper triangular matrix in the QR factovization of /1 = I, which is mathematically zero
when 2 is an eigenvalue of /. If the computed value of py is not “tiny”, then the computed
downdated polynomial might be inaccurate. \We therefore consider p,, and 1 as being part of

the output of the algorithm.

* ks




Algorithm 2.1 (Downdating by removing the node-weight pair {:.1} )
Input: m. {y;}7%,, {a,} 0 {a;} ey, 2

Output: {4}, {a,)7= {"1},-1 s Py

J];sl = 7m{'7vn-J]T=-1‘? ["11 '-["m—zlm-l

[“j]ﬁ-x = [“m-ﬂ-l]}'l_-v'
bo:=6p:i= L}

for j:=1,2,....,m-1do

= (n2+l 28,01 + 051 )1/2
ifj22then a0 =11,
roi=alp;

& 1= (36,00 + 7,8,-10)/n)

0= =, + 70,400

Nye1 =10, + t;jn,+|.'

(51 v T30y

] 51 - ‘f_;-b-l-:l;

?,,

[

‘51
p,,, = |56m-1 + '/msm-llv'

el '= Tina1 s W = |6m-l|“01 Fg = Tin-100.

-~

met = Yma1/|Fm=1l; @y 1= 0: (parameter LOHCCUOH)

me=2 , me=y} ,

[U];:l = ../"l-le-J-l =k [(7)]

[”J]';,;k = “"I-J];"_—ll; Q

n—-

{am-J"l] "l ’

The algorithm overwrites the Fourier coeflicients {n, }7% with intermediate quantities. Al
gorithm 2.1 requires O(m) arithmetic operations (+.-.+,/) and the evaluation of m - 1 square
roots.

\WVe have already noted that if the nodes z; are real, thea the analogue of the matrix JI
is a rcal symmetric tridiagonal matrix T with positive subdiagonal clements. Similarly with
Algorithm 2.1, downdating of the orthonormal polynomials associated with T, as well as of
Fourier coeflicients, can be carried out by algorithms based on the QR algorithm for symmetric
tridiagonal matrices. This observation may be new,

In certain data-fitting applications it may be desirable to update the poiynomial pp-,
given by (1.9)=(1.10) with n = m. by replacing certain node-weight pairs. This can be carried

out by successively removing an node-weight pair by \lgorithm 2.1, and then adding a new

10




node-weight pair using one step of Algorithm 3.1 in [¥]. This combination of algorithms yiclds

a sliding window scheme,

3 Downdating and the FFT algorithm

When the nodes z; are equidistant or the unit circle and all weights w} are unity, then
interpolation and least-squares approximation of a given function by algebraic or trigonometric
polynomials can be carried out rapidly by the I'FT algorithm. This section describes in some
detail how our downdating scheme may be combined with the FFT algorithm to achieve rapid
schemes for interpolation when the nodes are essentiallv equidistant. More precisely, we will
consider the case when the set of nodes {2}, in the inner product (1.1) is a subset of the
set of equidistant nodes {ux[)(‘lrij/j\’)}',\:__'“', where k1= A" = is a small positive integer, In
our operation count we will assume that « is independent of m. The weights w in (1.1) are all
assumed to be unity,

Let [/ denote a complex-vadued function, whose values f(z), 1 < & < m.oare explicily
hnown. We remark that a tepresentation of the interpolating polynomial pnoy € -y in
Newton form can be computed in O(m?) arithmetic operations. The Vandermonde solver by
Bjorck and Pereyra [2] can be used to determine a representation of pym.y in terms of the
monomial basis, and requires also O(m?) arithmetic operations. Our scheme only requires
O(m log m) arithmetic operations and vields a representation of pm-; in the basis of Szegd

polynomials.

N-
J=0

Let {=}}7=, denote the complement of the et {z )i, in {exp(27ij/N)}5). and let
J(z1) = 0.1 <k €k Thus, fis defined at the N roots of unity exp(2mi(j~ 1)/ V). 1 <j <N,
and we can compute the Fourier coeflicients of the polynomial pyoy € 1lv-; that interpolates
/ at these nodes by the FET algorithm in O(.V log V) = O(m log m) arithmetic operations.
Using the Schur parameters given in Example 1.1, we apply Algorithm 2.1 » times to climinate
the nodes =i, 1 £ k < &, from the inner product. ‘This requires O(m) arithme.ic operations
and yiclds the Fourier cocllicients of the desired interpolating polynomial p,,-y. The Fourier
coefficients of the least squares approximants p, -y € Il,_; with n < m are. of course. a subset
of the Fourier coellicients of py, -y

A scheme closely related to the one outlined above can be used to compute trigonometric

polvnomials rapidly. Let 2 and 2 be the nodes intraduced above, and define 6 := arg(z),

L< € moand 8 i= arg(s). 1 € & <k Ao assume that m is odd. i.e.. m = 2r + 1. Let
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f(8) be a real-valued function defined at the nodes 8y and let f(8) := 0.1 < k < &, We wish
to compute a trigonometric polynomial #(#) € span{l.cos 8....,cos rf.sin @....,sin 6} that

minimizes the sum

ST f(8) - 106))

k=1
This can be accomplished as follows. First solve the minimization problem

min i je2milk=1r/N ¢ <(,~. _ 1)%) _ iajezxi(k-n(j-l)mlz
o€ L=y ) 1=t

by the FFT algorithm in O(m log m) arithmetic operations, and denote the optimal coefficients
by &;. Remove the nodes 8}, 1 < &k < &, by applying the downdating scheme & times to the
polynomial fizrex(s) = 'j;t" a,z¢, where N = | = 2r 4+ &, This requires O(m) arithmetic
operations and viclds the polynomial py,. € Mar. The desired trigonometric polynomial is then

given by 1(8) 1= 27" pp,(2). T = exp(i6).

4 Computed examples

We now present the results of some numerical experiments with our downdating procedure.
These experiments were performed in FORTRAN on a SparcStation SLC at Northern Illinois
University, on which there are approximately T and 16 significant decimal digits in single-
precision and double-precision calculations, respectively.

‘The first set of experiments compares the accuracy of the downdating procedure with that of
the updating procedure [IUQR described in [8]. We input .V unimodular nodes {‘-'J}}V:u positive
weights {w}}f’:l, and complex function values { f( :,)}3\;,. For any positive integer m < NV, let
am denote the vector of Fourier coellicients ol the solution pm-y of (1.6) with n = m, and let
gm dcnote the vector of Schur parameters determined by the inner product (1.1) and recurrence
relations (1.2)-(1.3).

We first compute vectors ay and gn using au implementation of the IUQR algorithm in
single-precision arithmetic [8]. We then repeatedly apply a single-precision implementation of
Algorithin 2.1 to compute &,, and g for decreasing values of m. The k™" application of Al-
gorithm 2.1 removes the node 2v_g4y from the inner product to compute the solution of (1.6)
with n = m = N = k. After cach downdating step, we calculate the relative error in 8,4, ie.,
llai, = amll2/llamll2, and the error in gm, i.c., ||gn — &mllz, Where ||x||; denotes the Euclidean
norm of x € C™. We also solve cach problem of order m using the IUQR algorithm in single-

precision arithmetic and compute the resulting errors. The results of the IUQR algorithm in
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double-precision arithmetic are used as exact answers in the error calculations. The following
tables display the resulting crrors for the downdating procedure (DD) and the updating proce-
dure (UD). In all of the experiments, cach function value f(z;) has its real part and imaginary
part randomly generated according to a uniformn distribution in [~5, 3].

We first choose the nodes to be the ¥ := 300 roots of unity z; := exp(2ri(j - 1)/N),
1 £ j £ N, and uniform weights wJ2 := 1. Table 1 shows the errors for problems of order
m = N =k for various values of k. Table | also shows the results with the same choice of nodes
and weights, except that the nodes are permuted in a random way. This permutation changes
the nodes that are deleted as well as the order in which the nodes are added in the updating
procedure, It should be noted that the errors in the downdating procedure can be expected to
increase as & increases. Table 2 shows that similar results are obtained with the same set of
nodes and randomly generated weights in (0,10).

Table 3 shows the rosults obtained with uniform weights and N := 300 nodes z; :=
exp(mi(j = 1)/N). 1 € j € N.in [0,7), both in their original order and in a random order.
Here again, the downdating procedure perforin~ well.

Table 4 shows the results when the initial 300 nodes are randomly selected points on the
unit circle. In this example, the error in the downdating procedure displays a sudden increase
at &k = 10. In this step the error in the computed downdated weight, |w — 1|, was grcater than
107", Observe that the error incurred at this downdating step propagated to the subsequent
downdating steps. but the errors in a,, and g, scem to grow gradually as & increases, i.e., as
m = N = k decreases. Other experiments with random nodes produced similar results, It
should be noted that in our experiments, a large error in the computed weight did not always
coiucide with a large jump in the errors in a,, and g,,. It is clear that more work needs to be
doue in order to understand the numerical aspects of the updating and downdating problems.

Our final experiment tests the accuracy and speed of the procedure described in Section
3 for downdating the FFT. The ~-point FFT is used to oltain the Fourier coefficients of the
interpolating polynomial py-y. A randomly sclected set of nodes is then removed from the
inner product using Algorithm 2.1, "This (xperiment was run with a radix-2 FFT subroutine in
single precision arithmetic with .V := 1021 and N := 2048, Table 3 shows the computed error
alter & downdating steps for various values of &, \s above, we use the results of the IUQR
algorithm in double precision arithnetic as exact answers for error checking. We also display

the amount of CPU time required by the FFT with & downdating steps and the time required
] 3 g
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Table 1: 300 nodes with equispaced arguments in [0,27); uniform weights.

nodes in orcder of increasing arguiment. | nodes in randoni order.
relative error 1 iy Crror i gy relative error in oy, Crror in gm
k pDD rn no (9 bD UD DD UD
0 O122B-03  0.122E-03 | 0.126E-03  0.126L-03 I 0.284E-04  0.284E-04 | 0.310E-04  0.34GE-04
10 O.LHE-03  0.121L-03 1 0.205E-03  0.1108-03 {{ 0.335E-04 0.200E-04 { 0.545E-04  0.310E-04
20 0.141E-03 0.113E-03 | 0.105E-03 0.1.18E-03 || 0.473E-04 0.314E-04 { 0.211E-03 0.361E-04
30 0.113E-03 0.100E-03 | 0.322E-03 0.154E-03 || 0.550E-04 0.272E-04 | 0.272E-03 0.331E-04
40 0.112E-03 0.967E-04 | 0.340E-03 0.155E-03 || 0.943E-04 0.257E-04 | 0.359E-03 0.374E-04
50 0.112E-03 0.940E-04 | 0.329E-03 0.1G1E-03 |} 0.964E-04 0.259E-04 | 0.325E-03 0.437E-04
70 0.124E-03 0.102E-03 | 0.578E-03 0.171E-03 || 0.174E-03 0.258E-04 | 0.424E-03 0.422E-04
90 0.132E-03 0.105E-03 | 0.725E-03 0.173E-03 || 0.254E-03 0.235E-04 | 0.677E-03 0.422E-04
110 0.154E-03 0.107E-03 | 0.365E-03 0.164E-03 |f 0.375E-03 0.238E-04 | 0.753E-03 0.383E-04
130 0.151E-03 0.117E-03 | 0.280E-03 0.1G0E-03 || 0.465E-03 0.226E-04 | 0.109E-02 0.359E-04
150 0.166E-03 0.127E-03 | 0.32.4E-03 0.150E-03 || 0.G00E-03 0.186E-04 | 0.119E-02 0.463E-04

by the single-precision IUQR algorithm on the problem of order m = .V = k. It is interesting to
note that the downdating procedure produces substantially wmore accurate answers faster than

the IUQR algorithin even Jor moderately sized values of k.

5 Conclusion

New algorithins are presented for discrete least squares approximation by algebraic poly-
nomials on the unit circle and by trigonometric polynomials. The algorithms downdate the
- approximant as well as recurrence cocfficients for Szegd polynomials wlen a node-abscissa pair
is removed {rom the inner product. The schemes are hased on the QR algorithm for unitary
llesseuberg matrices. A particularly attractive application is to combine our algorithm for
trigonometric polynomials with the fast Fourier transforin algorithm. This yiclds a fast scheme

for computing trigonowmetric least squares approximants when the nodes of the inner product

form a subset of equidistant nodes on [0,27).

14



Table 2: 300 nodes with equispaced arguments in [0,27); random weights in (d, 10)

nodes in order ol hicreasing argument,

nodes in random order.

" relative error inn fyn

error in gy,

relative error in &y

error in gm

k DD UD DD uD DD | UuD

0 0.207E-03 U.207E-03 | U.2A1E-08  0.211E-03 |[ U-511E-04 0.511E-01 | 0.572E-04

10 0.206E-03 0.183E-03 | 0.335E-03 0.181E-03 §| 0.563E-04 0.537E-04 | 0.844E-04 0.744E-04
20 0.199E-03 0.17T4E-03 | 0.4LTE-03 0.192E-03 |} 0.620E-04 0.512E-04 | 0.140E-03 0.722E-04
30 0.187E-03 0.173E-03 | 0.362E-03 0.198E-03 || 0.785E-04 0.518E-04 | 0.252E-03 0.750E-04
40 0.188E-03  0.17OE-03 [ 0.340E-03  0.2031E-03 || 0.873E-04 0.509E-04 | 0.303C-03 0.739E-04
S0 0JA8IE-03  0.16TFE-03 | 0.334E-03  0.2091-03 || 0.308E-03 0.487E-01 [ 0.414E-03 0.714E-0|
700 0.208E-03  0.169E-03 | 0.604E-03 0.217F-03 || 0.106E-03 0.479E-04 | 0.624E-03 0.638E-04
00 0.1928-03 0 LISE-03 | 0.763E-03  0.22212-08 || 0.572E-03 0.442E-04 | 0.178E-02 0.688E-0!
110 0.1Y8E-03  0.153E-03 | 0.389E-03 0.220£-04 || 0.874E-03 0.333E-04 | 0.184E-02 0.533E-04
130 0.201E-03 0.155E-03 | 0.341E-03 0.213E-03 || 0.8904E-03 0.286E-04 | 0.139E-02 0.401E.0
150 0.201E-03 0.1GOE-03 | 0.379E-03 0.195F-03 {[ 0.122E-02 0.256E-04 | 0.1533E-02 0.285E-01

Table 3: 300 nodes with equispaced arguments in [0, 7); uniform weights.
nodes in order of mcreasing argument. nodes in random order.
relative error iy, error 1 g, relative error i fyn error 1 g,

k DD UD DD UD DD UD DD UD

U 0.398E-03 0.J98E-03 | 0.T12E-03 0.712LE-03 || 0.125E-03 0.125E-U3 | O.11GE-03~ 0.116E-03 |
10 0.453E-03 0.398E-03 | 0.188E-02 0.743E-03 [} 0.125E-02 0.101E-03 | 0.10GE-02 0.124E.03
20 0.437E-03 0.389E-03 | 0.187E-02 0.720E-03 || 0.144E-02 0.112E-03 | 0.146E-02 0.122E-03
30 0.452E-03 0.390E-03 | 0.228E-02 0.714E-03 || 0.170E-02 0.110E-03 | 0.163E-02 0.131E-03
40 0.479E-03 0.391LE-03 | 0.265E-02 0.G94E-03 || 0.195E-02 0.947E-04 | 0.167E-02 0.113E-03
50 0.508E-03 0.391E-03 | 0.271E-02 0.680L-03 {| 0.215E-02 0.886E-0t { 0.165E-02 0.109E-03
70 0.57GE-03 0 431E-03 | 0.278E-02 0.645E-03 || 0.251E-02 0.796E-04 | 0.210E-02 0.109E-03
00 0.533E-03 0.430E-03 | 0.168E-02 0.G05E-03 || 0.36TE-02 0.849E-04 | 0.302E-02 0.106E-03
110 0.558E-03  0.35E-03 | 0 193E-02  0.5320-03 || 0.458E-02 0.795E-04 | 0.367E-02  0.102E-03
130 0.630E-03 0 1238-08 1 0200802 0 305F-03 1 0.328E-02  0.792E-01 § 0.539F-02  0.840E-01
150 0.110E-02  0-193F-08 | 0 336E-02  01661-03 || 0.671E-02  0.548E-01 | 0.528E-02 0.895E-6-




Table -1; 300 nodes with random arguments in [0,2r); uniform weights.

k

relative error 1 iy,

DD

"D

Crror i g

no

uD

10
20
30
10
20
70
90
110
130
150

U 1103
1) H08L-03
0 218E-01
0 2INE-01
0.220E.01
0 114801
0.136K-01
0 196E-01
0 210E-01
0.317E-01
1.502E-01
0.313E-01

O THLE-03
U. 1091-03
0.160L-03
U.129E-03
0 1641E.03
0.LITE-03
0.124E-03
0.137E-03
0.1221-03
0.137E-03
U.120E-03
0.788E-04

0 Y25L-03
0.914E-03
0.318E-01
0.373E-01
0.328E-01
0.131E-0!
0.240E-01
0.264E-01
0.275E-0!
0.520E-01
0.352E-01
0.865E-01

0.925E-03
0.838E-03
0.838E-03
0.789E-03
0.735E-03
0.326E-03
0.654E-03
0.658E-03
0.483E-03
0.100E-02
0.508E-03
0.350E-03

L6




‘Table 3: Downdating the FFT

N o= 1021 relative error v iy, Crror in gm "CPU scconds
n k DD Ub_ DD UD DD uD
1013 11 | U.101E-05  U.213E-01 | 0.218E-05  0.204E-01 | 0.303E+01 0.148E+03
993 31 | 0.502E-05 0.215E-01 | 0.623E-05 0.195E-01 | 0.814E+0l 0.142E+03
0973 51 | 0.603E-05 0.217E-0l | 0.142E-04 0.193E-01 | 0.132E+02 0.136E+03
923 101 | 0.900E-05  0.103E-0i | 0.257E-04  0.244E-01 | 0.253E+02 0.122E+03
913 111 | 0.944E-05  0.191E-01 | 0.265E-04  0.242E.0! | 0.276E+02 0.119E+03
803 131 { O.111E-0%  0.178E-0f | 0.312E-04 0.210E-01 | 0.323E+02 0.114E+03
873 151 ] 0.120E-04  0.174E-0! | 0.373E-04  0.220E-01 | 0.368E+02 0.109E+03
853 171 | 0.143E-04 0.172E-01 | 0.462E-04 0.221E-01 | 0.412E+02 0.104E+03
83. 191 { 0.17T2E-04  0.174E-01 | 0.566E-04 0.220E-01 | 0.456E+02 0.990C+02
13 211 { 0.223E-01  0.1T1E-01 | U.T21E-04  0.241E-01 | 0.497E+02 0.941E+0(2
T3 S OTTEO  0s3E.0L | 0.131E-03  0.169E-01 | 0.692E+02 0.T19E+02
613 Ll | 016TE-08  004E-01 | 0.458E-03  0.275E-01 | 0.862E+02 0.527E+02
313 311 [ 0.267E-03  0.7GOE-02 | 0.527E-03  0.174E-01 | 0.101E+03 0.365E+02
413 611 | U.28GE-03  0.HITE-02 | 0.18TE-03  0.852E-02 | 0.112E403 0.233E+02
313 71§ 0.A37E-03  0.322E-02 | 0.554E-03  0.781E-02 | 0.122E+03 0.132E+02
N = 2048 relative error 1 iy, error in gm CPU seconds
m k nD UD nD UD DD UD
2037 T | U.508E-05  0.105L+00 | 0.250C-05 0.184E+00 | 0.301E+01 0.300E+03
1997 51 | 0.T40E-05 (L.1I0E+00 | 0.151E-04 0.235E+00 | 0.172E+02 0.374E+03
1947 101 | G.L0OE-01  0.102E+00 | 0.203E-04 0.164E+00 | 0.336E+02 0.355E+03
18397 161 | 0LL25E-01  0.9808E-01 | 0.126E-04 0.126E+00 | 0.495E+02 0.337E+03
1847 200 { 0139E-01  0.918E-01 | 0612E-04  0.131E+00 | 0.649E402 0.319E+403
1707 2501 | O.237E-01  O.881E-01 | 0.812E-04 0.136E+00 | 0.799E+02 0.30!E+03
ITAT 300 1 O230F-01 0 8GSE-01 | 0 HIGE-03  0.157E+00 | 0.916E4+02 0.283E+03
1697 351 [ 0.338E-0t  0.831L-01 | 0.113E-03  0.137E+00 | 0.109E+03 0.268E+03
1647 401 | O514E-01 O R09E-01 | 0 ITOE-03  0.125E+00 | 0.123E+03  0.252E+03
1397 151 | 0 T49E-01 0 T48E-01 | 0.212E-03 0.133E+02 | 0.136E+03 0.237E+03
1547 501 { 0 779E-04  0.729E-0! | 0.243E-03 0.132E+00 | 0.149E+03 0.222E+03
147 601 | 0953E-04  0.G95C-01 | 0 313E-03 0.149E+00 | 0.174E4+03 0.194E+03
1347 701 | 0.242E-03 0 G28E-01 | 0.396E-93 0.114E+00 | 0.197E4+03 0.13TE+03
L1147 901 | 0517E-03  0.1443E-01 | 0.109E-02 0.116E+00 | 0.238E+03 0.121E+403
1047 1001 | O.T31E-03  0.381E.01 | 0.113E-02  0.640E-01 | 0.256E+03 0.lu0E+03
947 1101 | 0.114E-02  0.285E-01 | 0.183E-02  0.523E-01 | 0.273E+03 0.315E+0?
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